Name and Surname	:			
Grade/Class	:	10	Mathematics Teacher :	

Hudson Park High School	
CETATOO SUPERAIS	
GRADE 10	
MATHEMATICS	
JUNE EXAMINATION	

Time	:	2 hour		
<u>Examiner</u>	:	PHL	<u>Moderator(s)</u> :	SLT CYT LBE SBL VNT KMP

Date

: 29 May 2023

INSTRUCTIONS

1. Illegible work, in the opinion of the marker, will earn zero marks.

Marks

: 100

- 2. Number your answers clearly and accurately, exactly as they appear on the question paper.
- 3. <u>NB</u> Start each new Question at the top of a page.
 Leave <u>2 lines</u> open between each of your answers.
- 4. **<u>NB</u>** Fill in the details requested on the front of this Question Paper
 - Hand in your submission in the following manner :
 - (on top) Answer pages in order
 - (below) Question Paper

DO NOT STAPLE the Answer pages and Question Paper.

- 5. Employ relevant formulae and show all working out. Answers alone *may* not be awarded full marks.
- 6. (Non-programmable and non-graphical) Calculators may be used, unless their usage is specifically prohibited.
- 7. Round off answers to 2 decimal places, where necessary, unless instructed otherwise.
- 8. If (Euclidean) GEOMETRIC statements are made, REASONS must be stated appropriately.
- 9. Answers must be written in blue and black ink, as distinctly as possible, on both sides of the page. An HB pencil (but not lighter eg 2H) may be for diagrams.

1.1	Given:	$x \in \{-34; -8; 0; 7; 9\}$	
	Choos	be the correct value(s) of x from the list above so that $\sqrt{\frac{36}{9+x}}$ is	
	1.1.1	Q	(1)
	1.1.2	\mathbb{Q}'	(1)
	1.1.3	\mathbb{R}'	(1)
	1.1.4	Z	(1)
1.2	Simp	blify as far as possible	
	1.2.1	$[5a^2 - (3a + b)][5a^2 + (3a + b)]$	(2)
	1.2.2	$(x^3 - y^3)(x^4 + x^2y^2 + y^3)$	(2)
	1.2.3	$x^{\frac{3}{5}}(3x^{\frac{2}{5}}-4x^{\frac{-3}{5}})$	(2)
	1.2.4	$\frac{5.2^{n+2}}{2^{n+4}-6.2^{n+1}}$	(3)
	1.2.5	$\frac{2x-1}{x^2-3x+2} - \frac{x-4}{x^2-4} - \frac{1}{1-x}$	(5)

[18]

- 2.1 Solve for *x*:
 - 2.1.1 $6(1-x^2) = 5x$ (3)

2.1.2
$$2a(x-b) = 3(a-x)$$
 (3)

2.1.3
$$2^{x(x-3)} = 0.25$$
 (4)

2.1.4
$$3x - \frac{4x+4}{16} = 3 + \frac{3(x-1)}{4}$$
 (3)

2.1.5
$$4.5^x = 120$$
 (3)

$$2.1.6 \quad 5.x^{\frac{-2}{3}} - 7 = 0 \tag{4}$$

2.1.7
$$2(x+3) - 5 = 2x + 1$$
 (1)

2.2 Solve for *a* and *b* simultaneously

$$\begin{aligned}
3a - 2b &= -29 \\
2a - b &= -18
\end{aligned} \tag{4}$$

2.3 Given $-1 \le 3 - 2x \le 5$

$$2.3.1 \quad \text{Solve for } x \tag{2}$$

- 2.3.2 Represent the solution in (2.3.1)
 - a) on a number line. (1)
 - b) in interval notation. (1)

[29]

3.1	Give	en the sequence 20: 17; 14;; -103 .	
	3.1.1	Show that the sequence is an arithmetic sequence.	(1)
	3.1.2	Determine the general term (T_n) simplify your answer.	(2)
	3.1.3	Calculate the number of terms in the sequence.	(2)
	3.1.4	Which term in the sequence will be the first to have a negative value?	(2)
3.2		The first three terms of an arithmetic sequence are:	
		x + 2; 4x; 6x + 4;	
	3.2.1	Determine the value of <i>x</i> .	(2)
	3.2.2	Hence, write down the first three terms of this arithmetic sequence.	(1)
3.3	Given:	1 = 1	
		1 + 3 = 4	
		1 + 3 + 5 = 9	
		1 + 3 + 5 + 7 = 16	
	3.3.1	Write down two more lines of this pattern.	(2)
	3.3.2	Now, consider: $1 + 3 + 5 + 7 +$	
	a)	Determine an expression for T_n , the general term of the sequence.	(3)
	b) If there are 235 terms in the sequence calculate the sum of all of the	
		terms in the sequence.	(1)

[16]

4.1 If $A = 15^{\circ}$ and $B = 48^{\circ}$, evaluate the following using a calculator.

4.1.1
$$\cos^2(A+B)$$
 (2)

4.1.2
$$\frac{1}{2}$$
tan2A.cosB (1)

4.2 Solve the following equations if θ is an acute angle.

4.2.1
$$8\sin\theta = 4.$$
 $\theta \in (0^\circ; 90^\circ)$ (2)

4.2.2
$$4 + \cos(\theta + 20^\circ) = 5,123.$$
 $(\theta + 20^\circ) \in (0^\circ; 90^\circ)$ (3)

4.2.3
$$\frac{4}{3}\cos\theta = \sin 37^{\circ}$$
. $\theta \in (0^{\circ}; 90^{\circ})$ (3)

4.3 CALCULATORS MAY NOT BE USED IN THIS QUESTION.

Show all your working out .

4.31	Draw fully labeled special angles diagrams used for			
	a) 30° and 60°	(1)		
	b) 45°	(1)		
	c) 0° and 90°	(1)		
4.3.2	Hence, using the diagrams in (4.3.1) evaluate			
	a) cosec 60°	(1)		
	b) tan 45°	(1)		
	c) cot 90°	(1)		
	d) $-3 \sec^2 30^\circ$	(2)		

4.4.1	Determine the length of AC, leaving your answer in surd form.	(2)
4.4.2	Write down the value of:	
	a) $\sin \theta$	(1)

b)
$$2\cos^2\theta$$
 (2)

c)
$$\tan(90^\circ - \theta)$$
 (1)

	Calculate the :			
4.5.1	length of AD	(3)		
4.5.2	size of \dot{B}_1	(3)		

4.6 If $\tan A + 4 = 0$ and $\sin A > 0$. Use a diagram, drawn in the correct quadrant,

(but no calculator) to calculate $\sqrt{1 - \sin^2 A}$.	(6))
---	-----	---

[37]

TOTAL 100 MARKS